Abstract

Small-scale, well exposed strike-slip fault zones near Kirkcudbright, Scotland, cut sub-vertical bedding, so that mapped bed separations allow the displacements, linkage and evolution of fault segments to be assessed. Displacement variations along the segments can be related to lithologic variations, conjugate relationships, offsets, segment linkage and fault bends. High displacement gradients at the tips of conjugate and offset faults produce convex-upwards (E-type) displacement-distance (d−x) profiles. Contractional fault bends and linkage points are marked by a decrease in fault displacement, producing partially concave-upwards (D-type) d−x profiles. Where fault displacement gradients are steep, wallrocks are marked by structures such as synthetic faults, normal drag folding, ductile strain and veining, which transfer displacement. The faults studied tend to have lower r/dMAX ratios (where r = distance between the point of maximum displacement and the fault tip on a particular profile, and dMAX = maximum displacement on the profile) than are shown by normal faults in map view. This may be because r is measured parallel to the displacement direction and/or because of lithologic variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call