Abstract

Periodic micro and nano-structures can be lithographically produced using the Talbot effect. However, the limited depth-of-field of the self-images has effectively prevented its practical use, especially for high-resolution structures with periods less than 1 micrometer. In this article we show that by integrating the diffraction field transmitted by a grating mask over a distance of one Talbot period, one can obtain an effective image that is independent of the absolute distance from the mask. In this way high resolution periodic patterns can be printed without the depth-of-field limitation of Talbot self-images. For one-dimensional patterns the image obtained is shown to be related to the convolution of the mask transmission function with itself. This technique, which we call Displacement Talbot Lithography (DTL), enables high-resolution photolithography without the need for complex and expensive projection optics for the production of periodic structures like diffraction gratings or photonic crystals. Experimental results showing the printing of linear gratings and an array of holes on a hexagonal lattice are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.