Abstract

SummaryBased on the Biot's poroelastic theory and using scalar potential functions both the ring load and point load displacement Green's functions for a transversely isotropic saturated porous full‐space composed of an upper half‐space, a finite thickness middle layer and a lower half‐space is analytically presented for the first time. It is assumed that each region consists of a different transversely isotropic material. The equations of poroelastodymanics in terms of the solid displacements and the pore fluid pressure are uncoupled with the help of two scalar potential functions, so that the governing equations for the potential functions are either a second order wave equation or a repeated wave‐heat transfer equation of sixth order. With the aid of Fourier expansion with respect to circumferential direction and Hankel integral transforms with respect to the radial direction in cylindrical coordinate system, the response is determined in the form of line integrals in the real space, followed by theorem of inverse Hankel integral transforms. The solutions degenerate to a single phase elastic material, and the results are compared with previous studies, where an excellent agreement may be observed with the results provided in the literature. Some examples of displacement Green's functions are finally given to illustrate the solution. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.