Abstract

We present a new displacement measuring technique with simplicity, robustness, high sensitivity and wide measurement range. A set of a frequency shifter and a voltage–frequency converter is used to lock a homodyne interferometer on the half-bright fringe by eliminating the Doppler fringe resulting from mirror motion. The mirror displacement is directly retrieved from the feedback signal of a fringe control loop. By developing a table-top interferometer, we successfully demonstrated signal recovery without significant degradation. The achieved displacement sensitivity and measurement range of the interferometer were 24 nm Hz−1/2 and 1.3 mm at a Fourier frequency of 0.1 Hz, respectively. This technique was found to have a potential for application to precise displacement measurements. It is, in particular, suitable for a satellite-to-satellite laser interferometer to determine Earth's gravity field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.