Abstract

This letter outlines a simultaneous actuation and displacement sensing technique applied to a microelectromechanical system (MEMS) electrostatic drive. Using the same electrostatic drive for both actuation and sensing allows more die space to be dedicated to the electrostatic drive, increasing the effective transduction efficiency of both functions and simplifying the mechanical design. Displacement sensing is performed with capacitive measurement implemented by incorporating the drive into an LC oscillator. This provides the mapping from displacement-to-capacitance to frequency-to-voltage. The technique was applied to a MEMS nanopositioner and the sensor exhibited no dynamics over the bandwidth of the device. The sensitivity of the sensor was 0.7551 ${\rm V}~\mu{\rm m}^{-1}$ and had a displacement noise floor of 0.00836 ${\rm nm}_{\rm rms}/\sqrt{\rm Hz}$ . $\hfill{[2014\hbox{-}0002]}$

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.