Abstract

Fault zones commonly consist of discontinuous surfaces or are composed of different kinds of en echelon fractures (tension cracks, R or P-type fractures) which give the brittle shear zone a width. Translation along these faults and related features can occur by sliding on the elementary planes and/or by solution/deposition processes with opening of transtension zones and possible dilatation of the shear zone. In order to understand how fault planes develop and to investigate the mechanical conditions corresponding to natural configurations, displacement along an analogue fault model was examined under conditions of direct shear. The experimental fracture patterns were then compared with the natural features. The structural elements of certain faults created by testing, and showing transpression and transtension zones, were found to be similar to natural domino structures bounded by elementary shears, and could be compared with computed situations. It can be inferred that stresses are reoriented inside the shear zone; the angle between elementary fractures depends on their order of development; transpression and transtension zones occur systematically; and the shear zone undergoes dilatancy under low normal stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call