Abstract

Displacement damage (DD) effect induced bit error ratio (BER) performance degradations in on-off keying (OOK), pulse position modulation (PPM), differential phase-shift keying (DPSK), and homodyne binary phase shift keying (BPSK) based systems were simulated and discussed under 1 MeV neutron irradiation to a total fluence of 1×1012 n/cm2 in this paper. Degradation of main optoelectronic devices included in communication systems were analyzed on the basis of existing experimental data. The system BER degradation was subsequently simulated and the variations of BER with different neutron irradiation location were also achieved. The result shows that DD on an Er-doped fiber amplifier (EDFA) is the dominant cause of system degradation, and a BPSK-based system performs better than the other three systems against DD. In order to improve radiation hardness of communication systems against DD, protection and enhancement of EDFA are required, and the use of a homodyne BPSK modulation scheme is a considered choice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call