Abstract

We show that certain free energy functionals that are not convex with respect to the usual convex structure on their domain of definition are strictly convex in the sense of displacement convexity under a natural change of variables.We use this to show that, in certain cases, the only critical points of these functionals are minimizers. This approach based on displacement convexity permits us to treat multicomponent systems as well as single component systems. The developments produce new examples of displacement convex functionals and, in the multi-component setting, jointly displacement convex functionals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.