Abstract
In recent years, levitated particles of optical traps in vacuum have shown the enormous potential for precision sensor development and new physics exploration. However, the accuracy of the sensor is still hampered by the uncertainty of the calibration factor relating the detected signal to the absolute displacement of the trapped particle. In this paper, we suggest and experimentally demonstrate a novel calibration method for optical tweezers based on free-falling particles in vacuum, where the gravitational acceleration is introduced as an absolute reference. Our work provides a calibration protocol with a great certainty and traceability, which is significant in improving the accuracy of precision sensing based on levitated optomechanical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.