Abstract

The present study proposes a new finite element methodology to analyse the behaviour of flexible combined pile–raft foundation (CPRF) situated in layered soil, in a displacement-based framework. The soil medium is idealised as an advanced elastic Pasternak medium and the piles and raft are modelled as bar and plate element, respectively. The two components of CPRF are analysed simultaneously and displacement compatibility is satisfied at the pile–raft junctions. A number of soil–structure interaction factors, which govern the behaviour of CPRF, are suitably subsumed in the analysis scheme. The proposed method is validated with available analytical and experimental studies. Further parametric studies, investigating the effects of soil layering and raft flexibility on the behaviour of CPRF, are explored. It is observed that the load sharing proportion between the components and the raft deformation pattern depend upon the thickness and position of the soft soil layer in a multilayered soil system. The thickness of the flexible raft plays a pivotal role in determining the behaviour of CPRF, founded in a multilayered soil profile. Thus, this research manifests notable advancement in understanding the behaviour of flexible CPRF in layered soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call