Abstract

Abstract Kinematic model of the human knee joint, considered as one-degree-of-freedom spatial parallel mechanism, is used to analyse the spatial displacement of the femur with respect to the tibia. The articular surfaces of femoral and tibia condyles are modelled, based on selected references, as spherical and planar surfaces. The condyles are contacted in two points and are guided by three ligaments modelled as binary links with constant lengths. In particular, the mechanism position problem is solved by using the vector method. The obtained kinematic characteristics are adequate to the experimental results presented in the literature. Additionally, the screw displacements of relative motion in the knee joint model are determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call