Abstract

An approach is presented to stiffness–damping simultaneous optimization for displacement–acceleration simultaneous control. To make a shear building model stiffer, the sum of mean-square interstorey drifts to stationary random excitations is minimized or the mean-square top-floor absolute acceleration is maximized subject to the constraints on total storey stiffness capacity and total damper capacity. Optimality conditions are derived and a two-step optimization method using the optimality conditions is devised. In the first step, the optimal design is found for a specified set of total storey stiffness capacity and total damper capacity. In the second step, a series of optimal designs is found with respect to a varied set of total storey stiffness capacity and total damper capacity. While increase of total stiffness capacity and increase of total damper capacity are both effective in reduction of deformation, only increase of total damper capacity is effective in reduction of acceleration. Acceleration control is carried out in the second step via increase of total damper capacity. It is shown through numerical examples that the proposed method is efficient and reliable. Copyright © 1999 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.