Abstract

We suggest a method for calculation of parameters of dispersive shock waves in the framework of Whitham modulation theory applied to nonintegrable wave equations with a wide class of initial conditions corresponding to propagation of a pulse into a medium at rest. The method is based on universal applicability of Whitham's "number of waves conservation law" as well as on the conjecture of applicability of its soliton counterpart to the above mentioned class of initial conditions which is substantiated by comparison with similar situations in the case of completely integrable wave equations. This allows one to calculate the limiting characteristic velocities of the Whitham modulation equations at the boundary with the smooth part of the pulse whose evolution obeys the dispersionless approximation equations. We show that explicit analytic expressions can be obtained for laws of motion of the edges. The validity of the method is confirmed by its application to similar situations described by the integrable Korteweg-de Vries (KdV) and nonlinear Schrödinger (NLS) equations and by comparison with the results of numerical simulations for the generalized KdV and NLS equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.