Abstract

The propagation of pulses in a dissipative medium is investigated both theoretically and experimentally. The theoretical work is based on the dissipative dispersion integral, and the measurements are made in an air‐filled periodic waveguide (i.e., the dispersion is Bloch wave dispersion). The dispersion integral is considered in the context of a sequence of characteristic pulse duration distances. The pulse propagates without distortion up to the smallest characteristic distance, and thereafter undergoes a new variety of distortion as it encounters each subsequent characteristic distance. Several new solutions of the dispersion integral that exhibit a variety of novel propagation properties are found. Pulses that shift in frequency as they propagate, accelerate as they propagate, and propagate at near‐infinite group velocity are found analytically and verified experimentally. [Work supported by ONR.]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.