Abstract
In this Note we study the dispersive properties of the numerical approximation schemes for the free Schrödinger equation. We consider finite-difference space semi-discretizations. We first show that the standard conservative scheme does not reproduce at the discrete level the properties of the continuous Schrödinger equation. This is due to spurious high frequency numerical solutions. In order to damp out these high-frequencies and to reflect the properties of the continuous problem we add a suitable extra numerical viscosity term at a convenient scale. We prove that the dispersive properties of this viscous scheme are uniform when the mesh-size tends to zero. Finally we prove the convergence of this viscous numerical scheme for a class of nonlinear Schrödinger equations with nonlinearities that may not be handeled by standard energy methods and that require the so-called Strichartz inequalities. To cite this article: L.I. Ignat, E. Zuazua, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.