Abstract
Let X 1, . . . , X n be independent exponential random variables with respective hazard rates λ1, . . . , λ n , and Y 1, . . . , Y n be independent and identically distributed random variables from an exponential distribution with hazard rate λ. Then, we prove that X 2:n , the second order statistic from X 1, . . . , X n , is larger than Y 2:n , the second order statistic from Y 1, . . . , Y n , in terms of the dispersive order if and only if $$\lambda\geq \sqrt{\frac{1}{{n\choose 2}}\sum_{1\leq i < j\leq n}\lambda_i\lambda_j}.$$ We also show that X 2:n is smaller than Y 2:n in terms of the dispersive order if and only if $$ \lambda\le\frac{\sum^{n}_{i=1} \lambda_i-{\rm max}_{1\leq i\leq n} \lambda_i}{n-1}. $$ Moreover, we extend the above two results to the proportional hazard rates model. These two results established here form nice extensions of the corresponding results on hazard rate, likelihood ratio, and MRL orderings established recently by Pǎltǎnea (J Stat Plan Inference 138:1993–1997, 2008), Zhao et al. (J Multivar Anal 100:952–962, 2009), and Zhao and Balakrishnan (J Stat Plan Inference 139:3027–3037, 2009), respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.