Abstract

Resonant inelastic X-ray scattering (RIXS) experiments performed at the oxygen-$K$ edge on the iridate perovskites {\SIOS} and {\SION} reveal a sequence of well-defined dispersive modes over the energy range up to $\sim 0.8$ eV. The momentum dependence of these modes and their variation with the experimental geometry allows us to assign each of them to specific collective magnetic and/or electronic excitation processes, including single and bi-magnons, and spin-orbit and electron-hole excitons. We thus demonstrated that dispersive magnetic and electronic excitations are observable at the O-$K$ edge in the presence of the strong spin-orbit coupling in the $5d$ shell of iridium and strong hybridization between Ir $5d$ and O $2p$ orbitals, which confirm and expand theoretical expectations. More generally, our results establish the utility of O-$K$ edge RIXS for studying the collective excitations in a range of $5d$ materials that are attracting increasing attention due to their novel magnetic and electronic properties. Especially, the strong RIXS response at O-$K$ edge opens up the opportunity for investigating collective excitations in thin films and heterostructures fabricated from these materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call