Abstract

ABSTRACTA rapid, simple, and sensitive method was developed for lead preconcentration and separation in various real samples by dispersive liquid–liquid microextraction based on the freezing of floating organic drop. In this method, a suitable extraction solvent dissolved in a dispersive solvent was quickly syringed into the water sample so that the solution became turbid. Then, two phases were separated by centrifugation. The floating extractant droplet can be easily solidified on an ice bath and taken out of the water sample. Then, it can be liquefied instantly at room temperature, and analyte can be determined in it. In the creation of a hydrophobic complex with lead, 1-(2-pyridylazo)-2-naphthole (PAN) was used as the chelating agent. 1-Undecanol and acetone were used as extraction and disperser solvent. To achieve the highest recovery, some factors (type and volume of dispersive and extraction solvent, pH, PAN concentration, and salt concentration) were optimised. Under optimised conditions (pH = 9, 1.0 × 10–3 mol L−1 PAN, 15% w/v NaCl, 100 µL 1-undecanol, and 0.3 mL acetone), the lead calibration graph was linear from 1.5 to 80 μg L−1. The detection limit and preconcentration factor were 0.5 μg L−1 and 50, respectively. Lead was successfully determined in water and food (spinach, rice, potato, carrot, and black tea bag) samples by this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.