Abstract

A microfluidic paper-based analytical device (µ-PAD) is a promising new technology platform for the development of extremely low-cost sensing devices. However, it has low sensitivity that might not enable to measure maximum allowable concentration of various pollutants in the environment. In this study, a dispersive liquid-liquid microextraction (DLLME) was developed as a preconcentration method to enhance the sensitivity of the µ-PAD for trace analysis of selected pesticides. Four critical parameters (volume of n-hexane and acetone, extraction time, NaCl amount) that affect the efficiency of DLLME have been optimized using response surface methodology. An acceptable mean recovery of 79-97% and 83-93% was observed at 1µgL-1 and 5µgL-1 fortification level, respectively, with very good repeatability (2.2-6.01% RSD) and reproducibility (5.60-10.41% RSD). Very high enrichment factors ranging from 317 to 1471 were obtained. The limits of detection for the studied analytes were in the range of 0.18-0.41µgL-1 which is much lower than the WHO limits of 5-50µgL-1 for similar category of analytes. Therefore, by coupling DLLME with µ-PAD, a sensitivity that allows to detect environmental threat and also that surpassed most of the previous reports have been achieved in this study. This implies that the preconcentration step has a paramount contribution to address the sensitivity problem associated with µ-PAD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.