Abstract

We study the dispersive properties of a linear equation in one spatial dimension which is inspired by models in peridynamics. The interplay between nonlocality and dispersion is analyzed in detail through the study of the asymptotics at low and high frequencies, revealing new features ruling the wave propagation in continua where nonlocal characteristics must be taken into account. Global dispersive estimates and existence of conserved functionals are proved. A comparison between these new effects and the classical local scenario is deepened also through a numerical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.