Abstract

Recently a new class of coarse-grained equations, known as a models, have been proposed for the mean motion of an ideal incompressible fluid. The use of one such model to represent the time-mean component of a turbulent b-plane circulation characterized by potential vorticity mixing is considered. In particular, the focus is on the wind-driven circulation in a shallow ocean basin, a problem well studied as a prototype of more realistic ocean dynamics. The authors demonstrate the ability of an a model to reproduce qualitatively the structure of a four-gyre circulation that forms (in the time mean) when the barotropic vorticity equation is driven by a symmetric, double-gyre wind forcing, and when the dissipation is weak. This is offered as a first step in assessing the utility of the a-model approach to simulating more complex geophysical flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.