Abstract

The propagation of dispersion-managed vector solitons in optical fibers with periodic and random birefringence is studied. With the help of a variational approach, the equations that describe the evolution of pulse parameters are derived. Numerical modeling is performed for variational equations and for fully coupled periodic and stochastic nonlinear Schrodinger equations. It is shown that variational equations can be effectively used to describe the averaged dynamics of dispersion-managed vector solitons with stochastic perturbations. It is shown, analytically and numerically, that dispersion-managed (DM) solitons have the same resistance to random birefringence as do ordinary solitons. The dependence of the mean decay length of a DM vector soliton on the strength of random birefringence and on the energy of the initial pulse is found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call