Abstract

We describe a low-coherence interferometric technique for simultaneous measurement of geometric thickness and group refractive index of highly dispersive samples. The technique is immune to the dispersion-induced asymmetry of the interferograms, thus overcoming limitations associated with some other low-coherence approaches to this simultaneous measurement. We use the experimental configuration of a tandem interferometer, with the samples to be characterized placed in an air gap in one arm of the measurement interferometer. Unambiguous, dispersion-insensitive measurements of critical group-delay imbalances in the measurement interferometer are determined from the optical frequency dependence of interferogram phases, by means of dispersive Fourier transform spectrometry. Sample thickness and group refractive index are calculated from these group delays. A thickness measurement precision of 0.2 microm and group index measurement accuracy of 5 parts in 10(5) across a wavelength range of 150 nm have been achieved for BK7 and fused-silica glass samples in the thickness range 2000 to 6000 microm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call