Abstract

We investigate the tolerance of the variation of average dispersion in a 40-Gb/s dispersion-managed soliton (DMS) transmission system. It is theoretically shown that dispersion tolerance is governed by pulse broadening and soliton interaction, and that the largest dispersion tolerance can be achieved by optimizing the pulse energy depending on the transmission distance. We construct a 40-Gb/s recirculating loop transmission system and show that the dispersion tolerance of over 180 ps/nm, which is much larger than that of a linear nonreturn-to-zero (NRZ) format system, can be realized by the optimization of the pulse energy at a transmission distance of more than 1000 km.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call