Abstract
Localized DNA circuits have shown good performance regarding reaction rate and sensitivity for sensing intracellular microRNAs (miRNAs). However, these methods reported recently require large kinds of DNA strands and suffer from low signal-to-background (S/B) ratio, which hinder their clinical application. To circumvent these issues, we herein developed a novel strategy for sensitive sensing and imaging miRNAs in living cells based on dispersion-to-localization of catalytic hairpin assembly (DL-CHA). This strategy consists of only three classes of DNA strands (two hairpins and a linker strand), which largely reduces sequence design complexity. Additionally, owing to the unique engineering of the substrate transformation from dispersion to localization, the DL-CHA exhibits not only minimal background leakage but also intensive signal amplification, thus significantly improving the S/B ratio. In particular, the simple sensing method is capable of imaging miRNAs in cells from clinical blood samples for the diagnosis of breast cancer. Therefore, this work provides a powerful tool for intracellular molecules detection and gives a much broader design space for constructing high-performance DNA circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.