Abstract

Surgical instrumentation is now available to facilitate wound debridement. The 2 primary options involve different energy applications, but both have the potential to spray. The Versajet II (Smith & Nephew, London, UK) utilizes a high-powered water jet to disrupt tissue and remove debris by means of the Venturi effect. The SonicVac (Misonix, Farmingdale, NY) is a direct-contact, low-frequency ultrasound debriding device. It delivers a high-energy ultrasound to a wound surface via a fluid medium, causing bubble cavitation, a physical effect of rapid pressure waves causing bubbles to form and implode that releases mechanical energy. This study is designed to assess spray dispersion under ideal and challenging conditions. The 2 aforementioned instruments were tested in a laboratory situation. Bacteria (Escherichia coli [ATCC#54288] or Staphylococcus epidermidis [RP62A]) were seeded onto separate pieces of beef steak. Culture plates were set up in a predesignated position around the specimen; the specimen was then treated for 60 seconds at a power setting of 7 and 70% irrigation (ultrasound device) or 10 (waterjet device). After 60 seconds of debridement, about 4 mm to 5 mm of muscle tissue had been removed by the ultrasound device and 2 mm to 3 mm by the waterjet. In the bony specimen, the bone was more exposed after the treatment. The ultrasound device polished but did not remove the bone. Both instruments performed well with minimal dispersion in the ideal setting. In beef steak with bone and grizzle, the waterjet created a lawn of bacterial spray in the plate in front of the surgeon. The ultrasound had a small number of contaminants in the same conditions. Both instruments can be used safely in the proper conditions, but the surgeon needs to be aware of the limitations and risks of spray dispersion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call