Abstract

The propagation of excitation modes in a relativistic ultradegenerate plasma is modified by their interactions with the medium. These modifications can be computed by evaluating their on-shell self-energy, which gives (gauge-independent) dispersion relations. For modes with momentum close to the Fermi momentum, the one-loop fermion self-energy is dominated by a diagram with a soft photon in the loop. We find the one-loop dispersion relations for quasiparticles and antiquasiparticles, which behave differently as a consequence of their very different phase-space restrictions when they scatter with the electrons of the Fermi sea. In a relativistic system, the unscreened magnetic interactions spoil the normal Fermi-liquid behavior of the plasma. For small values of the Fermi velocity, we recover the nonrelativistic dispersion relations of condensed-matter systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.