Abstract
We derive approximate expressions for the dispersion relation of the nonlinear Klein-Gordon equation in the case of strong nonlinearities using a method based on the linear delta expansion. All the results obtained in this article are fully analytical, never involve the use of special functions, and can be used to obtain systematic approximations to the exact results to any desired degree of accuracy. We compare our findings with similar results in the literature and show that our approach leads to better and simpler results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.