Abstract
We discuss coupling effects in infrared spectra which are caused by dispersion and local field effects. The first effect is instigated by changes of the refractive index due to absorption which have an impact on the strength of adjacent absorptions. The second effect is a consequence of the light-induced polarization of one molecule affecting neighboring ones. These coupling effects do not only effect band positions, but also influence relative intensities. They are particularly strong in case of overlapping bands and complicate their deconvolution by band fitting. We investigated the corresponding challenges for the HO-stretching vibrations in water and the Amide I band in proteins. Our findings show that the effects are significant and of high interest for protein and water structure determination. Especially, for the water stretching vibrations we conclude that it is of utmost importance to consider such coupling effects in quantum mechanical calculations of water spectra. Otherwise, progress in understanding band positions and profiles is likely to be hampered. Also, in case of the Amide I band we found a distinct impact of such coupling effects. Accordingly, we strongly recommend consideration of dispersion and local field effects to ensure the possibility of an accurate, quantitative determination of α-helix and β-sheet structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.