Abstract
A two-dimensional model is considered in the form of a phononic crystal having a rectangular lattice with elastically interacting ellipse-shaped particles possessing two translational and one rotational degrees of freedom. The linear differential-difference equations are obtained by the method of structural modeling to describe propagation of longitudinal, transverse and rotational waves in the medium. It is found analytically how the coefficients of the equations depend on the sizes of the particle and on the parameters of interactions between them. The dispersion properties of the model are analyzed. Existence of a backward wave is established. The threshold frequencies of acoustic and rotational waves in some crystalline materials with cubic symmetry are estimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.