Abstract

The paper considers the dispersion of charge carriers depending on the background noise and the electric field exposure. This dependence is obtained using the Lax equivalence theorem in terms of the step distribution of spectral density of extrinsic electronic defect states within the forbidden band of semiconductor. Instead of using quasi-Fermi levels, the paper describes the semiconductor density state under the background noise. This approach is based on ‘heating’ the semiconductor with background noise allowing to correctly detect the Fermi energy-level within the wide range of the power of background noise. It is observed that the dispersion/voltage dependence continuously grows and saturates, while the background noise shifts this dependence to the lower values of voltage. Based on the results, it is shown that the noise minimum of n-CdSe photoresistor under the background noise and electric field exposure cannot be explained only by the assumed step distribution of spectral density of extrinsic electronic defect states within the forbidden band of semiconductor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.