Abstract

During the third year of the pandemic in Peru, the persistent transmission of SARS-CoV-2 led to the appearance of more transmissible and immune-evasive Omicron sublineages; in that context, the National Genomic Surveillance of SARS-CoV-2 performed by the Peruvian National Institute of Health detected spike mutations in the circulating Omicron BA.5.1.25 sublineage which was later designated as DJ.1 and increased during the fourth COVID-19 wave, this eventually branched into new sublineages. The introduction, emergence, and timing of the most recent common ancestor (tMRCA) of BA.5.1.25 and its descendants (DJ.1, DJ.1.1, DJ.1.2, and DJ.1.3) were investigated in this paper as well as the time lags between their emergence and identification by the Peruvian National Institute of Health. Our findings show that ongoing genomic surveillance of SARS-CoV-2 is critical for understanding its phylogenetic evolution and the emergence of novel variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.