Abstract

A method is described for characterizing magnetically inhomogeneous media and the spatial scales of intrinsic susceptibility variations within samples. The rate of spin-lattice relaxation in the rotating frame, R1ρ , is affected by diffusion effects to a degree that depends on the magnitude of an applied spin-locking field. Appropriate analysis of the dispersion of R1ρ with locking field may be used to characterize susceptibility variations in inhomogeneous tissues. The contribution of diffusion to R1ρ is quantified by an analytic expression derived by analyzing of the effects of diffusion through periodic variations of magnetic susceptibility and is used to predict the effects of inhomogeneities in simple phantoms. The theory is further applied to imaging to derive parametric images that portray the dimensions of susceptibility inhomogeneities independent of their magnitude. Significant dispersion of R1ρ with locking field was predicted and measured experimentally for suspensions of microspheres ranging from 1 to 90 μm in diameter. For scales of practical interest, these dispersion effects occur at much lower locking fields than the range in which chemical exchange effects cause similar dispersion. There is good agreement between theory and experiment, and the method has potential for quantitative tissue characterization and functional imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.