Abstract

AbstractThe colloidal stability of aqueous nanometer‐ and micrometer‐scale barium titanate (BaTiO3) utilizing poly (methacrylic acid) (PMAA‐Na) and polyacrylamide/(α‐N,N‐dimethyl‐N‐acryloyloxyethyl)ammonium ethanate (PDAAE) was investigated. In addition to chemical dispersants, the effects of mechanical milling using either conventional ball milling or nanogrinding/‐mixing on the dispersion of BaTiO3 suspensions were also studied. Characterization of the particle size distribution (d50), viscosity, and morphology of BaTiO3 particles in the suspensions revealed that a sole chemical dispersant or mechanical milling was insufficient to achieve nanometer‐scale dispersion. The best dispersion results were obtained with a combination of PMAA‐Na dispersant and nanogrinding/‐mixing, which could provide sufficient electronic repulsive force and shear force to disperse the 80‐nm BaTiO3 powders uniformly in the aqueous suspension. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.