Abstract

As functional metal complexes, copper phthalocyanine (CuPc) and Cobalt (II) meso-tetraphenylporphyrin (CoTPP) were chosen to prepare metal complex/polymer hybrid thin films which were prepared by metal complex sublimation and reactive monomer evaporation onto the glass substrate in the bell jar reactor in vacuum conditions. The polarized transmission micrograph images show that the film deposited at 80 °C contains uniformly dispersed tiny grains and the film deposited at 30 °C is amorphous and homogeneous. As the deposition rate increases, the crystalline clusters were found and were dispersed uniformly. Those crystalline clusters are not to be developed by recrystallization process. Deposited metal complex/acrylate hybrid thin films were in situ photopolymerized. The kinetics of photopolymerization was investigated by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The thickness of the films was about 200 nm. The reactive monomer acts as a solvent to avoid the recrystallization of metal complexes and to have two-compositional continuous phase. The percent of metal complex can be adjusted up to 60% by controlling the metal complex sublimation rate. A good achievement in the uniformity and continuity of the film matrix has been made and the recrystallization of metal complex in the hybrid films has not been observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call