Abstract
Based on the all-electron full-potential linearized augmented plane wave within density functional theory calculations dispersion of the electronic band structure, total and the angular momentum resolved projected density of states, the shape of Fermi surface, the electronic charge density distribution and the optical response of the intermetallic LiBe compound are performed. Seeking the influence of the different exchange correlations on the ground state properties of the intermetallic LiBe, calculations are performed within four types of exchange correlations, namely the local density approximation, general gradient approximation, Engel–Vosko generalized gradient approximation and the modified Becke–Johnson potential. It has been found that replacing the exchange correlations exhibit insignificant influence on the bands dispersion, density of states and hence the optical properties. The obtained results suggest that there exists a strong hybridization between the states resulting in covalent bonds. The Fermi surface is formed by two bands and the center of the Fermi surface is formed by holes. The electronic charge density distribution confirms that the charge is attracted toward Be atoms and the calculated bond lengths are in good accordance with the available experimental data. To get deep insight into the electronic structure, the optical properties are investigated and analyzed in accordance with the calculated band structure and the density of states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.