Abstract

The paper analyzes the dispersion characteristics of eigen oscillation frequencies of electromagnetic, elastic and diffusion waves. The analysis is based on the general invariant expression of the Lagrange function density in a solid subjected to the elastoplastic deformation with u(r,t) strain vector of its inner points, electromagnetic field potentials A(r,t) and φ(r,t ) , and concentration n(r,t) of diffusing substance with regard to a correlation between these parameters. Owing to the least-action principle, four linear, interconnected differential equations are obtained. Form their solution all the four frequency spectra ωi (k ) are derived, where i=1,2,3,4 and k is the wave vector. It is found that the obtained dispersions are the important part in the quantum case, if taking the interaction between the four components into consideration, when knowledge of the function ωi (k ) is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.