Abstract

Propagation of time-harmonic elastic waves through periodically inhomogeneous media is considered. The material inhomogeneity exists in a single direction along which the elastic waves propagate. Within the period of the linear elastic and isotropic medium, the density and elastic modulus vary either in a continuous or a discontinuous manner. The continuous variations are approximated by staircase functions so that the generic problem at hand is the propagation of elastic waves in a medium whose finite period consists of an arbitrary number of different homogeneous layers. A dynamic elasticity formulation is followed and the exact phase velocity is derived explicitly as a solution in closed form in terms of frequency and layer properties. Numerical examples are then presented for several inhomogeneous structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call