Abstract

Propagation of time-harmonic elastic waves through periodically inhomogeneous media is considered. The material inhomogeneity exists in a single direction along which the elastic waves propagate. Within the period of the linear elastic and isotropic medium, the density and elastic modulus vary either in a continuous or a discontinuous manner. The continuous variations are approximated by staircase functions so that the generic problem at hand is the propagation of elastic waves in a medium whose finite period consists of an arbitrary number of different homogeneous layers. A dynamic elasticity formulation is followed and the exact phase velocity is derived explicitly as a solution in closed form in terms of frequency and layer properties. Numerical examples are then presented for several inhomogeneous structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.