Abstract

Dispersion of two-dimensional (2D) exciton polaritons in a semiconductor microcavity containing bulk excitons in a central layer has been considered using the transfer-matrix technique and Pekar's additional boundary conditions. Solving dispersion equations for TE and TM polarized light modes we have obtained angle-dependent complex self-energies of eigenpolariton states, which have been compared with frequencies of resonant features in the calculated spectra. In TM polarization a pronounced spectral feature associated with the longitudinal polariton mode has been found in the vicinity of the lowest transverse polariton state, so that the 2D-polariton dispersion has a form of double anticrossing in this region. In the strong-coupling regime, the polariton splitting (Rabi splitting) decreases with an increasing index of the confined polariton state. Splittings between spectral dips exceed strongly Rabi splittings for higher exciton states. \textcopyright{} 1996 The American Physical Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.