Abstract

Various quantitative phase microscopy (QPM) techniques for noninvasive and quantitative analysis of samples proposed based on imaging interferometry techniques over the last decade [1-4]. A phase image can be obtained with a single set of interference data in some types of phase microscopes such as diffraction phase microscope [5, 6]. They are suitable for studying rapidly varying phenomena with reduced concern for systematic and sample variations that may occur during the acquisition of the raw data. Dispersion measurements of a sample carry more information than refractive index of measurements at a single wavelength [7]. Knowledge of the optical dispersion for phase objects such as optical fibers, biological cells and micro-particles can provide very useful information about their property. In this work, we report on a common-path and dual wavelength quantitative phase microscope that simultaneously acquires two phase images at different wavelengths. The simultaneous dual-wavelength measurement was performed with a diffraction phase microscope based on a transmission grating and a spatial filter that form a common-path imaging interferometer. With a combined laser source that generates two-color light continuously, a different diffraction order of the grating was utilized for each wavelength component so that the dual-wavelength interference pattern could be distinguished by the distinct fringe frequencies. The refractive index profiles of fiber in both wavelengths were measured adequately by our DW-DPM system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call