Abstract

We show that the low density strongly interacting electron liquid, interacting via the long-range Coulomb interaction, could develop a dispersion instability at a critical density associated with the approximate flattening of the quasiparticle energy dispersion. At the critical density the quasiparticle effective mass diverges at the Fermi surface, but the signature of this Fermi surface instability manifests itself away from the Fermi momentum at higher densities. For densities below the critical density the system is unstable since the quasiparticle velocity becomes negative. We show that one physical mechanism underlying the dispersion instability is the emission of soft plasmons by the quasiparticles. The dispersion instability occurs both in two-dimensional and three-dimensional electron liquids. We discuss the implications of the dispersion instability for experiments at low electron densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.