Abstract

Inert tracer breakthrough experiments were used to parameterize hydrodynamic dispersion in undisturbed cores of surface sediment from lacustrine, estuarine, and marine depositional environments. The sediments studied cover wide ranges of composition, porosity (46 to 83%), mean grain size (10−5to 10−2cm), and sorting (0·48–1·26). As expected, hydrodynamic dispersion depends on the average longitudinal fluid flow velocity through the sediment plug. At linear flow velocities exceeding 10−4cm s−1, mechanical dispersion exceeds diffusion in all sediment cores studied. Compared to the classical studies on dispersion in sand columns, however, Peclet numbers based on particle size measurements do not provide a reliable guide for predicting the transition from molecular diffusion-dominated to mechanical dispersion-dominated flow regimes in the sediments. It is believed that the influence of pore structure on dispersion is much larger than that of particle size and that the characteristic pore lengths in the finest, highly porous sediments are orders of magnitude larger than the mean grain size. Aggregation, microlaminations, and a heterogeneous pore size distribution may all contribute to non-ideal flow conditions in the sediments. Tailing of the breakthrough curve occurred occasionally in fine grain sediment, signifying micro and macro scale dispersion and non-ideal flow behavior. Experiments showing significant non-ideal flow through the sediment plug were not used for calculation of hydrodynamic dispersion coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.