Abstract
Discharges from combustion within a coal pit which occur during night-time inversion conditions may result in stagnant accumulation of smoke and dangerous gases which could inhibit mining operations. A wind-tunnel model study was performed to identify the range of flow and mixing conditions which could exist when stably stratified atmospheric surface flows pass over a large open pit. Flow penetration into the pit depended upon approach-flow stability (Froude number) and the strength of the thermal inversion within the coal pit. Measurements of wind speed and temperature were made upwind, within and downwind of the pit. Concentration measurements were made within the pit, of surface sources released along pit walls. Pollutant levels were found to be strong functions of the approach-flow pit Froude number, source location, and release time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Boundary-Layer Meteorology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.