Abstract

The plasma temperature (or the kinetic pressure) anisotropy is an intrinsic characteristic of a collisionless magnetized plasma. In this paper, based on the two-fluid model, a dispersion equation of low-frequency (ω ≪ ωci, ωci the ion gyrofrequency) waves, including the plasma temperature anisotropy effect, is presented. We investigate the properties of low-frequency waves when the parallel temperature exceeds the perpendicular temperature, and especially their dependence on the propagation angle, pressure anisotropy, and energy closures. The results show that both the instable Alfvén and slow modes are purely growing. The growth rate of the Alfvén wave is not affected by the propagation angle or energy closures, while that of the slow wave depends sensitively on the propagation angle and energy closures as well as pressure anisotropy. The fast wave is always stable. We also show how to elaborate the symbolic calculation of the dispersion equation performed using Mathematica Notebook.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.