Abstract
A problem of forecasting the parameters of physical-chemical model for heterogeneous media based on available standard data selection considered as a field of corresponding parameters dispersion is being considered. Dispersion of parameters is considered as an observed component of medium heterogeneity effects manifestation, which is simulated by a function of concentration based on diffusion equations. Diffusion operator is being designed based on fundamental solutions of diffusion equations, which made possible to obtain prognostic field of dispersion for sought-for parameter. A problem of reconstruction of heterogeneities density concentration in distribution of expected parameter as a solution of integral equation of the first kind is formulated. On the basis of Mamdani rule of logical conclusion chain rules of calculation for resultant dispersion field for prediction of heterogeneities of final parameters have been designed. An example of modeling the dispersion field for presence of oil by one of conditional oil deposits is presented, which demonstrates validity of new notions introduced.
Highlights
Òðàäèöèîííûé ñïîñîá åå ðåøåíèÿ õîðîøî èçâåñòåí è ñîñòîèò â ïîñòðîåíèè óðàâíåíèé ðåãðåññèè ìåæäó ýêñïåðèìåíòàëüíî èçìåðåííûìè ïàðàìåòðàìè è ïîñëåäóþùèì èñïîëüçîâàíèè ýòîãî óðàâíåíèÿ äëÿ ïðîãíîçà èñêîìûõ ïàðàìåòðîâ
Ïðèíöèï ïîäáîðà ïàðàìåòðîâ óðàâíåíèÿ ðåãðåññèè, äàæå åñëè ýòî ñîïðîâîæäàåòñÿ ïîñòðîåíèåì âàðèîãðàìì, îñíîâàí íà òîì, ÷òî âñå, ÷òî íå óêëàäûâàåòñÿ â ýòó èñêîìóþ çàâèñèìîñòü, åñòü îøèáêà è ýòó îøèáêó ñëåäóåò ñäåëàòü ìèíèìàëüíîé, îòáðàñûâàÿ îñîáåííîñòè è õàðàêòåð ðàññåÿíèÿ ðåàëüíûõ íàáëþäåíèé, ñ÷èòàÿ ðàññåÿíèå îøèáêàìè
Ïðèâåäåííûå â ñòàòüå òåîðèÿ è ìåòîäû ìîäåëèðîâàíèÿ ýôôåêòîâ ðàññåÿíèÿ äîïîëíèòåëüíî ê èçó÷åíèþ ýôôåêòîâ íåîäíîðîäíîñòè ïîçâîëÿþò ïîëó÷èòü äèôôåðåíöèðîâàííûé ïî äîñòîâåðíîñòè ïðîãíîç çàïàñîâ óãëåâîäîðîäîâ
Summary
Äëÿ çàäà÷ êîìïëåêñíîé èíòåðïðåòàöèè äàííûõ ñåéñìîãðàâèìåòðèè òàêîå ïðîãíîçèðîâàíèå ñëóæèò ýëåìåíòîì òåõíîëîãèè ñîâìåñòíîé èíâåðñèè â òîé ëèáî èíîé ôîðìóëèðîâêå [Êîáðóíîâ, 1980; Ãîëèçäðà, 1984; Starostenko et al, 1988; Àêñåíîâ, 1998]. Îäíàêî íàèáîëüøåå ïðèêëàäíîå çíà÷åíèå çàäà÷à ïðîãíîçèðîâàíèÿ ïàðàìåòðîâ èìååò â ñâÿçè ñ èíòåðïðåòàöèåé äàííûõ ãåîôèçè÷åñêèõ èññëåäîâàíèé ñêâàæèí [Äàõíîâ, 1975; Âåíäåëüøòåéí, Ðåçâàíîâ, 1978] è îñîáåííî ïðè ïîäñ÷åòå çàïàñîâ óãëåâîäîðîäíîãî ñûðüÿ. Òðàäèöèîííûé ñïîñîá åå ðåøåíèÿ õîðîøî èçâåñòåí è ñîñòîèò â ïîñòðîåíèè óðàâíåíèé ðåãðåññèè ìåæäó ýêñïåðèìåíòàëüíî èçìåðåííûìè ïàðàìåòðàìè è ïîñëåäóþùèì èñïîëüçîâàíèè ýòîãî óðàâíåíèÿ äëÿ ïðîãíîçà èñêîìûõ ïàðàìåòðîâ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.