Abstract

We propose a novel design for all-solid photonic bandgap fiber (AS-PBGF) by introducing defect rods with larger diameters into fiber cladding. By means of the plane-wave expansion method and the full-vector finite-element method, we study the effect of introducing such defect rods and numerically investigate dispersion characteristics of proposed AS-PBGF. Simulation results demonstrate that large waveguide group-velocity dispersion (GVD) (both normal and anomalous) is induced within bandgap rather than near the edge of bandgap as conventional photonics bandgap fiber does, which guarantees that large dispersion and low confinement loss could be simultaneously achieved. We also find that there are two essential factors affecting the slope of waveguide GVD, which determines the third-order dispersion: number of defect rods and the ring where defect rods are introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.