Abstract

The degrees of freedom afforded by nanocomposite materials and additive manufacturing allow for the precise control over the chromatic properties of gradient index (GRIN) optics. The ability to engineer nanocomposite optical materials using blends of three or more constituents makes it possible to independently specify the refractive index gradient and the dispersion of optical materials. The refractive index spectra of the primary nanocomposite feedstock are defined relative to one another using various concentrations of monomers and nanofillers. Inkjet deposition is then used to print-compose specific feedstock to form refractive index gradients with precise control over dispersion. Arrays of 4-mm-diameter spherical GRIN lenses were fabricated using different nanomaterial compositions. The ability to positively and negatively control dispersion and to obtain achromatic performance was demonstrated. Control over partial dispersion is also shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call