Abstract

We propose a new dispersion control scheme by introducing hollow ring defects having a central air hole and a GeO2-or F-doped silica ring with in a square lattice photonic crystal fiber. We confirmed the flexible dispersion controllability in the proposed structure in two aspects of dispersion managements: ultra-flattened near-zero dispersion in the 530 nm-bandwidth over all communication bands and dispersion compensation in C, L, and U band with a high compensation ratio of 0.96~1.0 in reference to the standard single mode fiber. The proposed SLPCFs were also estimated to have an inherently low splice loss due to the index contrast between the doped-ring and silica that kept a good guidance even along with collapsed air holes, which cannot be achieved in conventional PCFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.