Abstract

The basic principles for use of dispersion compensating fibers (DCF) are reviewed, including definition of figure of merit and condition for dispersion slope compensation. The main design features of a triple-cladding index profile design are examined theoretically and experimentally. Production results are presented for three types of DCF. It is shown that polarization-mode dispersion can be reduced by introducing oscillatory twist into the fiber. The splice loss between DCF and standard fibers is shown to be reducible by use of a special intermediate fiber. Two methods for measuring the nonlinear effective area of DCF are compared and good agreement is found. Measurement results for the nonlinear refractive index n2 are reported. The nonlinear coefficient n2/Aeff of DCF is found to be a factor of 5 higher than that on standard single-made fibers. The macrobending resistance of DCF is examined and found to be comparable with that of standard fibers. The microbending resistance of DCF is found to be better than that of standard fibers. Finally, positive results from a cabling experiment with DCF are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.