Abstract
AbstractManipulating terahertz (THz) polarization in an efficient and broadband manner is of great significance to facilitating THz applications, including communications, imaging, defense, and homeland security. In this work, a dispersion compensation scheme is proposed for high‐efficiency and ultra‐broadband THz polarization manipulation using an anisotropic dielectric‐metal hybrid metadevice. The operating bandwidth is broadened by dispersion compensation, where the dielectric grating provides an artificial birefringence with a phase dispersion of positive slope and the metallic grating provides a phase dispersion of negative slope. Experimental results show that the device achieves two ultra‐broadband dispersion compensation, corresponding to the achromatic quarter‐wave plate in the lower frequency band (QWP: 0.5–2.0 THz, PCR >0.95) and the achromatic half‐wave plate in the higher frequency band (HWP: 1.0–2.1 THz, PCR >0.9), respectively. Theoretically, the bandwidth of QWP can be further improved to 2.6 THz by optimizing the grating dispersion, which brings huge application space to cover most of the THz radiation. This hybrid metadevice configuration offers a versatile platform for engineering electromagnetic waves, and the strategy of phase compensation can be generalized to extend the bandwidth of the metadevice in imaging and communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.